Изготовление акустических систем своими руками. Расчет кроссовера для акустики своими силами Схема подключения шп динамика через фильтр

  • 17.08.2023

В данной статье поговорим о фильтре высоких и низких частот, как характеризуются и их разновидностях.

Фильтры высоких и низких частот — это электрические цепи, состоящие из элементов, обладающих нелинейной АЧХ — имеющих разное сопротивление на разных частотах.

Частотные фильтры можно поделить на фильтры верхних (высоких) частот и фильтры нижних (низких) частот. Почему чаще говорят «верхних», а не «высоких» частот? Потому, что в звукотехнике низкие частоты заканчиваются 2 килогерцами и начинаются высокие частоты. А в радиотехнике 2 килогерца это другая категория – частота звука, а значит «низкая частота»! В звукотехнике есть ещё понятие — средние частоты. Так вот, фильтры средних частот, это, как правило, либо комбинация двух фильтров нижних и верхних частот, либо другого рода полосовой фильтр.

Повторимся ещё раз:

Для характеристики фильтров низких и высоких частот, да и не только фильтров, а любых элементов радиосхем, существует понятие – амплитудно-частотная характеристика , или АЧХ

Частотные фильтры характеризуются показателями

Частота среза – это частота, на которой происходит спад амплитуды выходного сигнала фильтра до значения 0,7 от входного сигнала.

Крутизна частотной характеристики фильтра – это характеристика фильтра, показывающая, насколько резко происходит уменьшение амплитуды выходного сигнала фильтра при изменении частоты входного сигнала. В идеале нужно стремиться к максимальному (вертикальному) спаду АЧХ.

Частотные фильтры изготавливаются из элементов, обладающих реактивными сопротивлениями – конденсаторов и катушек индуктивности. Реактивные сопротивления, используемых в фильтрах конденсаторов (Х C ) и катушек индуктивности (X L ) связаны с частотой ниже приведёнными формулами:

Расчёт фильтров до проведения экспериментов с использованием специального оборудования (генераторов, спектр-анализаторов и других приборов), в домашних условиях проще сделать в программе Microsoft Excel, сделав простейшую автоматическую расчётную табличку (надо уметь работать с формулами в Excel). Я пользуюсь таким способом, для расчёта любых цепей. Сначала делаю табличку, подставляю данные, получаю расчёт, который переношу на бумагу в виде графика АЧХ, меняю параметры, и снова рисую точки АЧХ. В таком способе, не надо разворачивать «лабораторию измерительных приборов», расчёт и рисование АЧХ производится быстро.

Следует добавить, что расчёт фильтра тогда будет верен, когда будет выполняться правило:

Для обеспечения точности фильтра, необходимо чтобы значение сопротивления элементов фильтра было приблизительно на два порядка меньше (в 100 раз) сопротивления нагрузки подключаемой к выходу фильтра. С уменьшением этой разницы, качество фильтра ухудшается. Связано это с тем, что сопротивление нагрузки влияет на качество частотного фильтра. Если Вам не нужна высокая точность, то эту разницу можно снизить до 10 раз.

Частотные фильтры бывают:

1. Одноэлементные (конденсатор – как фильтр высоких частот, или дроссель – как фильтр низких частот);

2. Г-образные – по внешнему виду напоминают букву Г, обращённую в другую сторону;

3. Т-образные – по внешнему виду напоминают букву Т;

4. П-образные – по внешнему виду напоминают букву П;

5. Многозвенные – те же Г-образные фильтры соединённые последовательно.

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

Г- образные фильтры

Г- образный фильтр высоких, или низких частот — делитель напряжения, состоящий из двух элементов с нелинейной АЧХ. Для Г-образного фильтра действует схема и все формулы, делителя напряжения.

Г-образные частотные фильтры на конденсаторе и резисторе

R 1 С Х C .

Принцип действия такого фильтра: конденсатор, обладая малым реактивным сопротивлением на высоких частотах, пропускает ток беспрепятственно, а на низких частотах его реактивное сопротивление максимально, поэтому ток через него не проходит.

Из статьи «Делитель напряжения» мы знаем, что значения резисторов можно описать формулами:

или

Х C и частоту среза.

R 2 к сопротивлению резистора R 1 (Х C ) соответствует: R 2 / R 1 = 0,7/0,3 = 2,33 . Отсюда следует: С = 1,16 / R 2 πf , где f – частота среза АЧХ фильтра.

R 2 делителя напряжения на конденсатор С , обладающий своим реактивным сопротивлением Х C .

Принцип действия такого фильтра: конденсатор, обладая малым реактивным сопротивлением на высоких частотах, шунтирует токи высоких частот на корпус, а на низких частотах его реактивное сопротивление максимально, поэтому ток через него не проходит.

Из статьи «Делитель напряжения» мы используем те же формулы:

или

Принимая входное напряжение за 1 (единицу), а выходное напряжение за 0,7 (значение соответствующее срезу), зная, реактивное сопротивление конденсатора, которое равно:

Подставив значения напряжений, мы найдём Х C и частоту среза.

R 2 (Х C ) к сопротивлению резистора R 1 соответствует: R 2 / R 1 = 0,7/0,3 = 2,33 . Отсюда следует: С = 1 / (4.66 x R 1 πf) , где f – частота среза АЧХ фильтра.

Г-образные частотные фильтры на катушке индуктивности и резисторе

Фильтр высоких частот получается путём замены резистора R 2 L X L .

Принцип действия такого фильтра: индуктивность, обладая малым реактивным сопротивлением на низких частотах, шунтирует их на корпус, а на высоких частотах её реактивное сопротивление максимально, поэтому ток через неё не проходит.

Подставив значения напряжений, мы найдём X L и частоту среза.

Как и в случае с фильтром высоких частот, расчёты можно делать и в обратном порядке. С учётом того, что амплитуда выходного напряжения фильтра (как делителя напряжения) на частоте среза АЧХ должна быть равна 0,7 от входного напряжения, следует, что отношение сопротивления резистора R 2 (X L ) к сопротивлению резистора R 1 соответствует: R 2 / R 1 = 0,7/0,3 = 2,33 . Отсюда следует: L = 1.16 R 1 / (πf) .

Фильтр низких частот получается путём замены резистора R 1 делителя напряжения на катушку индуктивности L , обладающую своим реактивным сопротивлением X L .

Принцип действия такого фильтра: катушка индуктивности, обладая малым реактивным сопротивлением на низких частотах, пропускает ток беспрепятственно, а на высоких частотах её реактивное сопротивление максимально, поэтому ток через неё не проходит.

Используя те же формулы из статьи «Делитель напряжения» и принимая входное напряжение за 1 (единицу), а выходное напряжение за 0,7 (значение соответствующее срезу), зная, реактивное сопротивление катушки индуктивности, которое равно:

Подставив значения напряжений, мы найдём X L и частоту среза.

Можно делать расчёты и в обратном порядке. С учётом того, что амплитуда выходного напряжения фильтра (как делителя напряжения) на частоте среза АЧХ должна быть равна 0,7 от входного напряжения, следует, что отношение сопротивления резистора R 2 к сопротивлению резистора R 1 (X L ) соответствует: R 2 / R 1 = 0,7/0,3 = 2,33 . Отсюда следует: L = R 2 / (4,66 πf)

Г-образные частотные фильтры на конденсаторе и дросселе

Фильтр высоких частот получается из обыкновенного делителя напряжения путём замены не только резистора R 1 на конденсатор С , а так же резистора R 2 на дроссель L . Такой фильтр имеет более значительный срез частот (более крутой спад) АЧХ, чем указанные выше фильтры на RC или RL цепях.

Как производилось ранее, используем те же способы расчёта. Конденсатор С , обладает своим реактивным сопротивлением Х C , а дроссель L — реактивным сопротивлением X L :

Подставляя значения различных величин — напряжений, входных или выходных сопротивлений фильтров, мы можем найти С и L , частоту среза АЧХ. Можно так же делать расчёты и в обратном порядке. Так, как переменных величин две – индуктивность и ёмкость, то чаще всего задают значение входного или выходного сопротивления фильтра как делителя напряжения на частоте среза АЧХ, а исходя из этого значения, находят остальные параметры.

Фильтр низких частот получается путём замены резистора R 1 делителя напряжения на катушку индуктивности L , а резистора R 2 на конденсатор С .

Как было описано ранее, используются те же способы расчёта, через формулы делителя напряжения и реактивные сопротивления элементов фильтров. При этом, приравниваем значение резистора R 1 к реактивному сопротивлению дросселя X L , а R 2 к реактивному сопротивлению конденсатора Х C .

Т — образные фильтры высоких и низких частот

Т- образные фильтры высоких и низких частот, это те же Г- образные фильтры, к которым добавляется ещё один элемент. Таким образом, они рассчитываются так же как делитель напряжения, состоящий из двух элементов с нелинейной АЧХ. А после, к расчётному значению суммируется значение реактивного сопротивления третьего элемента. Другой, менее точный способ расчёта Т-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «первого» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента Т-образного фильтра. Если это конденсатор, то значение ёмкости конденсаторов в Т-фильтре увеличивается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек уменьшается в два раза. Преобразование фильтров показано на рисунках. Особенность Т-образных фильтров заключается в том, что они по сравнению с Г-образными, своим выходным сопротивлением оказывают меньшее шунтирующее действие на радио цепи, стоящие за фильтром.

П — образные фильтры высоких и низких частот

П-образные фильтры, это те же Г- образные фильтры, к которым добавляется ещё один элемент впереди фильтра. Всё, что было написано для Т-образных фильтров справедливо для П-образных, разница лишь в том, что они по сравнению с Г-образными, несколько увеличивают шунтирующее действие на радио цепи, стоящие перед фильтром.

Как и в случае с Т-образными фильтрами, для расчёта П-образных используют формулы делителя напряжения, с добавлением дополнительного шунтирующего сопротивления первого элемента фильтра. Другой, менее точный способ расчёта П-образного фильтра начинается с расчёта Г-образного фильтра, после чего, значение «последнего» рассчитанного элемента Г-образного фильтра увеличивается, или уменьшается в два раза – «распределяется» на два элемента П-образного фильтра. В противоположность Т-образному фильтру, если это конденсатор, то значение ёмкости конденсаторов в П-фильтре уменьшается в два раза, а если это резистор или дроссель, то значение сопротивления, или индуктивности катушек увеличивается в два раза.

В связи с тем, что изготовление катушек индуктивности (дросселей) требует определённых усилий, а иногда и дополнительного места для их размещения, то более выгодным бывает изготовление фильтров из конденсаторов и резисторов, без применения катушек индуктивности. Это особенно актуально на звуковых частотах. Так, фильтры верхних частот обычно делают Т-образными, а нижних частот делают П-образными. Есть ещё фильтры средних частот, которые, как правило, делают Г-образными (из двух конденсаторов).

Полосовые резонансные фильтры

Полосовые резонансные частотные фильтры – предназначены для выделения, или режекции (вырезания) определённой полосы частот. Резонансные частотные фильтры могут состоять из одного, двух, или трех колебательных контуров, настроенных на определённую частоту. Резонансные фильтры обладают наиболее крутым подъёмом (или спадом) АЧХ, по сравнению с другими (не резонансными) фильтрами. Полосовые резонансные частотные фильтры могут быть одноэлементными — с одним контуром, Г-образными – с двумя контурами, Т и П-образными – с тремя контурами, многозвенными – с четырьмя и более контурами.

На рисунке представлена схема Т-образного полосового резонансного фильтра, предназначенного для выделения определённой частоты. Состоит он из трёх колебательных контуров. C 1 L 1 и C 3 L 3 – последовательные колебательные контуры, на резонансной частоте имеют малое сопротивление протекающему току, а на других частотах наоборот – большое. Параллельный контур C 2 L 2 наоборот, имеет большое сопротивление на резонансной частоте, обладая малым сопротивлением на других частотах. Для расширения ширины полосы пропускания такого фильтра, уменьшают добротность контуров, изменяя конструкцию катушек индуктивности, расстраивая контура «вправо, влево» на частоту, немного отличающуюся от центральной резонансной, параллельно контуру C 2 L 2 подключают резистор.

На следующем рисунке представлена схема Т-образного режекторного резонансного фильтра, предназначенного для подавления определённой частоты. Он, как и предыдущий фильтр состоит из трёх колебательных контуров, но принцип выделения частот у такого фильтра другой. C 1 L 1 и C 3 L 3 – параллельные колебательные контуры, на резонансной частоте имеют большое сопротивление протекающему току, а на других частотах – маленькое. Параллельный контур C 2 L 2 наоборот, имеет малое сопротивление на резонансной частоте, обладая большим сопротивлением на других частотах. Таким образом, если предыдущий фильтр резонансную частоту выделяет, а остальные частоты подавляет, то этот фильтр, беспрепятственно пропускает все частоты, кроме резонансной частоты.

Порядок расчёта полосовых резонансных фильтров основан всё на том же делителе напряжения, где в качестве единичного элемента выступает LC контур с его характеристическим сопротивлением. Как рассчитывается колебательный контур, определяются его резонансная частота, добротность и характеристическое (волновое) сопротивление вы можете найти в статье


Доброго времени суток, уважаемые читатели! Сегодня речь пойдёт о сборке простого фильтра низких частот. Но несмотря на свою простоту, по качеству фильтр не уступает магазинным аналогам. Итак, приступим!

Основные характеристики фильтра

  • Частота среза 300 Гц, более высокие частоты отсекаются;
  • Питающее напряжение 9-30 Вольт;
  • Потребляет фильтр 7 мА.

Схема

Схема фильтра представлена на следующем рисунке:


Список деталей:
  • DD1 - BA4558;
  • VD1 - Д814Б;
  • C1, C2 - 10 мкФ;
  • С3 - 0,033 мкФ;
  • С4 - 220 нф;
  • С5 - 100 нф;
  • С6 - 100 мкФ;
  • С7 - 10 мкФ;
  • С8 - 100 нф;
  • R1, R2 - 15 кОм;
  • R3, R4 - 100 кОм;
  • R5 - 47 кОм;
  • R6, R7 - 10 кОм;
  • R8 - 1 кОм;
  • R9 - 100 кОм - переменный;
  • R10 - 100 кОм;
  • R11 - 2 кОм.

Изготовление фильтра низких частот

На резисторе R11, конденсаторе C6 и стабилитроне VD1 собран блок стабилизации напряжения.


Если напряжение питания меньше 15 Вольт, то R11 следует исключить.
На компонентах R1, R2, С1, С2 собран сумматор входных сигналов.


Его можно исключить, если на вход подаётся моносигнал. Источник сигнала при этом следует подключать напрямую ко второму контакту микросхемы.
DD1.1 усиливает входной сигнал, а на DD1.2 собран непосредственно сам фильтр.


Конденсатор С7 фильтрует выходной сигнал, на R9, R10, С8 реализован регулятор звука, его также можно исключить и снимать сигнал с минусовой ножки С7.
Со схемой разобрались, теперь давайте перейдём к изготовлению печатной платы. Для этого нам понадобится стеклотекстолит размерами 2х4 см.
Файл платы фильтра низких частот:

(cкачиваний: 378)



Шлифуем до блеска мелкозернистой наждачной бумагой, обезжириваем поверхность спиртом. Распечатываем этот рисунок, переносим на текстолит методом ЛУТ.



При необходимости дорисовываем дорожки лаком.
Теперь следует приготовить раствор для травления: растворяем 1 часть лимонной кислоты в трёх частях перекиси водорода (пропорция 1:3 соответственно). Добавляем в раствор щепотку соли, она - катализатор и в процессе травления не участвует.
В приготовленный раствор погружаем плату. Ждём растворения лишней меди с её поверхности. По окончании процесса травления достаём нашу плату, промываем проточной водой и снимаем тонер ацетоном.


Компоненты впаивайте, ориентируясь на это фото:


В первой версии рисунка я не сделал отверстие под R4, поэтому припаял его снизу, в документе для скачивания этот недостаток устранён.
На обратной стороне платы необходимо припаять перемычку:

В этой статье будет рассказано о том, как сделать фильтр высокой частоты своими руками. Но прежде чем мы с вами начнем в этом разбираться, мы должны кое-что понять. То, что же из себя представляют сами фильтры высоких и низких частот.

Определение

Фильтры можно поделить на верхние (высокие) и нижние (низкие) частоты. Почему люди часто говорят “верхние”, а не “высокие” частоты? Происходит это из-за того, что с двух килогерц начинаются высокие в звукотехнике. Но два килогерца в радиотехнике — это частота звука, и поэтому ее называют “низкой”.

Также существует такое понятие, как средняя частота. Относится оно к звукотехнике. Так что же такое фильтр средней частоты? Это комбинация из нескольких вышеперечисленных устройств. Также это может быть полосовой фильтр.

Фильтр высокой частоты - это электронный или какой-нибудь прочий аппарат, который пропускает верхние частоты сигнала, и который на входе подавляет частоту сигнала в соответствии с ранее заданным срезом. Степень подавленности будет также зависеть от определенного типа фильтра.

Низкочастотный отличается тем, что он может пропускать входящий сигнал, который будет ниже заданного среза, при этом подавляя верхние частоты.

Область применения

Фильтр высокой частоты можно использовать для того, чтобы выделять высокочастотные сигналы. Также часто его применяют при обработке аудиосигналов, например, в раздельных фильтрах, которые еще называют кроссоверными. Также они используются для обрабатывания изображений, чтобы можно было осуществить преобразование в частотной области.

Вот из чего состоит простейший фильтр высоких частот:

  • Резистор.
  • Конденсатор.

Работа сопротивления на емкость (R х С) есть постоянной времени (длительность протекания процесса) для данного фильтра, которая будет обратно пропорциональна частоте среза в герцах (единица измерения процессов колебаний).

Расчет фильтра высоких частот

Итак, как же мы можем провести расчет? Чтобы выполнить все действия на дому, нужно сделать одну из самых простых таблиц автоматического расчета в Microsoft Excel, но для этого нужно уметь пользоваться формулами в этой программе.

Можно пользоваться такой формулой:

Где f - это частота среза; R - это Ом; С - это емкость конденсатора, Ф (фарады).

Типы

Представленные устройства бывают пяти видов, и сейчас мы с вами их поочередно рассмотрим.

  • П-образные — по виду напоминают букву П;
  • Т-образные — напоминают букву Т;
  • Г-образные — напоминают букву Г;
  • одноэлементные (конденсатор служит фильтром для высоких частот);
  • многозвенные - это те же самые Г-образные фильтры, только в этом случае они соединены последовательно.

П-образные

Можно сказать, что эти фильтры такие же, как и Г-образные, но к ним присоединяется вдобавок еще одна часть вначале. Все, что будет написано для Т-образных, будет верно и для П-образных. Отличия лишь заключаются в том, что у них увеличится шунтирующее действие на радиоцепь, стоящую спереди.

Вот вам примеры перехода Г-образного RC фильтра в П-образный RC также высоких частот:

На изображении можно заметить, что к исходной цепи добавляется еще один резистор 2R, расположенный параллельно первому.

Вот пример преобразования в RL:

Здесь вместо резисторра выстпает катушка индуктивности. Так же добавляется вторая (2L), расположенная параллельно первой.

И третий пример — преобразования в LC:

Т-образные

Т-образный фильтр — это тот же самый Г-образный, только с добавлением еще одного элемента.

Они будут рассчитываться таким же образом как и делитель напряжения, который будет состоять из двух частей с нелинейным АЧХ. Далее к полученному значению необходимо прибавить число реактивного сопротивления третьего элемента.

Также можно использовать и другой метод расчета, однако на практике он менее точен. Его суть заключается в том, что после полученного значения первой рассчитанной части Г-образного фильтра переменная растет или падает в двойне и распределяется на два элемента.

Если это будет конденсатор, тогда значение емкости катушек растет вдвойне, если же это резистор или дроссель, тогда значение сопротивления катушек, наоборот, падает вдвойне.

Примеры преобразования приведены ниже.

Переход Г-образного RC фильтра в Т-образный:

На изображении видено, что для перехода необходимо добавить второй конденсатор (2C).

Переход RL:

В данном случае все по аналогии. Для успешного перехода необходимо добавить второй резистор, подключенный последовательно.

Переход LC:

Г-образные

Г-образный фильтр - это делитель напряжения, который состоит из двух составляющих с нелинейной АЧХ (амплитудно-частотная характеристика). Для данного фильтра разрешается использовать схему и все формулы делителя напряжения.

Его можно представить так:

Если мы заменим сопротивление R1 на конденсатор, то у нас получится фильтр верхних частот. Фото измененной схеме вы можете наблюдать ниже:

Формулы для расчета:

U вх=U вых*(R1+R2)/R2; U вых=U вх*R2/(R1+R2); R общ=R1+R2

R1=U вх*R2/U вых - R2; R2=U вых*R общ/U вх

Сейчас давайте наглядно рассмотрим, как провести расчет.

Фильтр высоких частот для пищалок

Строение такого фильтра довольно простое. Он будет состоять всего лишь из двух деталей - конденсатора и сопротивления.

Роль фильтра, который будет отсеивать среднечастотные и низкочастотные составляющие в аудиосигнале, будет исполнять непосредственно роль самого конденсатора. И простите за тавтологию, сопротивление будет выполнять роль сопротивления, то есть уменьшать уровень громкости.

Важно: высокие частоты эквалайзером с главного устройства не отрезаются - это будет вести к плохому звучанию. Лучше уменьшать их количество при помощи сопротивления.

Затрачиваемые материалы для создания

Для создания фильтра высокой частоты для пищалки вам будут необходимы следующие материалы:

  • одно сопротивление 5,5 Ом;
  • одно сопротивление 4,0 Ом;
  • два конденсатора МБМ 1,0 мкФ;
  • изолента либо термоусадочная трубка.

Активный фильтр высоких частот

Активные фильтры обладают огромным преимуществом перед их пассивными "сородичами", тем более на частотах, значение которых меньше 10 кГЦ. Дело в том, что пассивные содержат катушки повышенной индуктивности и конденсаторы, которые обладают большой емкостью. Из-за этого они получаются громоздкими и дорогостоящими, и поэтому их характеристика по итогу выходит далеко не идеальной.

Большой индуктивности достигают благодаря увеличенному количеству витков катушки и использования ферромагнитного сердечника. Это освобождает ее свойства чистой индуктивности, потому что длинный провод катушки с большим числом витков имеет значимое сопротивление, а ферромагнитный сердечник подвергается влиянию температуры, что в значительной мере сказывается на его магнитных свойствах. Из-за того, что необходимо использовать большую емкость, приходится применять конденсаторы, которые обладают не лучшей стабильностью. К ним можно отнести электролитические конденсаторы. Фильтры, именуемые активными, во-многом лишены указанных выше недостатков.

Дифференциаторные и интеграторные схемы построены с применением операционных усилителей, они собой представляют простейшие активные фильтры. Когда выбирают элементы схемы по четкой инструкции, соблюдая зависимость от частоты дифференциатора, они становятся высокочастотными фильтрами, а от частоты интеграторов, напротив, - низкочастотными. Фото, объясняющие все сказанное, приведено ниже:

Фильтр высоких частот на усилителе

Рассмотрим настройку усилителя в машине.

Перед тем в машине, нужно сбросить все настройки главного устройства на нули. Величину частоты среза кроссовера нужно выставить в диапазоне 50-70 Гц. Фронтальный фильтр канала на усилителе в автомобиле устанавливают в положение высоких частот. Частота среза в данном случае выставляется в диапазоне 70-90 Гц.

Если конструкция будет предусматривать поканальное усиление фронтальных колонок, то нужно провести отдельную настройку высокочастотных динамиков. Для этого фильтр нужно установить в соответствующем положении и частоту среза выбрать в районе 2500 Гц.

Помимо прочего, нужно настроить чувствительность усилителя. Для этого его изначально необходимо сбросить на ноль, главное — устройство перевести в режим максимальной громкости, а следом начать увеличивать чувствительность. В тот момент, когда появится искажение звука, нужно прекратить вращение регулятора, а также стоит немного убавить саму чувствительность.

Еще есть незатейливый способ, как можно проверить качество звука: если после включения в сабвуфере слышны щелчки, а в динамике треск - это означает то, что имеются помехи для сигнала.

Басы не должны быть привязаны к сабвуферу. Для этого нужно повернуть регулятор фазы на сабвуфере на 180 градусов. Если этого регулятора нет, то нужно поменять местами положительный и отрицательный провода подключения.

Настроить звуковой процессор. Для этого необходимо отрегулировать временные задержки по каждому из каналов. Нужно установить временную задержку по левому каналу для того, чтобы звук, исходящий из левых динамиков достигал водителя в одно время с правым. Должно создаваться ощущение, что звук исходит из центральной части салона.

Кроме всего вышеперечисленного, звуковым процессором можно убрать привязку басов к задней части салона. Для того чтобы это сделать, нужно задать одинаковые задержки в правом и левом канале фронтальной акустики. Вследствие этого устранится локализация басов в районе сабвуфера.

Расчет кроссовера для акустики75

Расчет кроссовера для акустики, как известно, очень важная операция. На свете не существует идеальных акустических систем, способных воспроизводить частотный диапазон полностью.
И тогда на помощь приходят отдельные участки спектра динамиков. К примеру, если надо воспроизводить НЧ, применяют сабвуфер, а чтобы воспроизвести ВЧ, устанавливают мидбасы.
Когда все эти динамики вместе взятые начинают играть, то может произойти путаница перед поступлением на тот или иной излучатель. По этой причине и необходим бывает активный или пассивный кроссовер для акустики.
В этой статье мы узнаем, для чего нужен расчет фильтра, рассмотрим пассивные кроссоверы, узнаем как они строятся на катушках индуктивности и конденсаторах.

Расчет кроссовера

Чтобы подключить 2-полосную(см.) или другую акустику с большим количеством полос к 1 каналу усилителя или ГУ, нужно некое отдельное устройство, разделяющее сигнал. При этом оно должно выделять для каждой полосы свои частоты. Именно такие устройства и называются фильтрами или кроссоверами.

Примечание. В комплекте с компонентной акустикой, как правило, уже идет пассивный кроссовер. Его готовил производитель и он рассчитан уже изначально.

Но что делать, если нужно разделить частоты по иной схеме (к примеру, если комплект акустики собран из отдельных компонентов)?
В этом случае речь идет о расчете кроссовера.Отметим сразу, что рассчитать кроссовер совершенно не сложно и даже можно самостоятельно изготовить его.

Ниже приводится инструкция о том, как рассчитать кроссовер:

  • Скачиваем специальную программу. Это может быть Crossover Elements Calculator на компьютер;
  • Вводим сопротивления низкочастотного и высокочастотного динамиков. Сопротивление – это номинальное значение сопротивления акустики, выражаемое в Ом. Как правило, средним значением является 4 Ом;
  • Вводим частоту раздела кроссовера. Здесь полезно будет знать, что частоту надо вводить в Гц, но ни в коем случае не в кГц.

Примечание. Если кроссовер второго порядка, то надо еще ввести тип кроссовера.

  • Получить ожидаемый результат можно, нажав на кнопку расчета.

Кроме того, надо знать следующее:

  • Емкость конденсаторов, а вернее их значение вводится в Фарадах;
  • Индуктивность рассчитывается в Генри (mH).

Схема расчета фильтра выглядит примерно так:

Фильтры разного порядка

Чтобы ясно понимать схему расчета кроссовера(см.), нужно понимать разницу между фильтрами разного порядка. Об этом и пойдет речь ниже.

Примечание. Существуют несколько порядков кроссовера. В данном случае порядок означает параметр кроссовера, который характеризует его способность ослаблять не нужные частотные сигналы.

Первый порядок

Схема 2-х полосного кроссовера этого порядка выглядит следующим образом:

По схеме видно, что ФНЧ или фильтр низких частот построен на катушке индуктивности, а фильтр высоких частот – на конденсаторе.

Примечание. Такой выбор компонентов не случаен, так как сопротивление катушки индуктивности повышается прямо пропорционально увеличению частоты. А вот что касается конденсатора, то здесь обратно пропорционально. Получается, что такая катушка отлично пропускает НЧ, а конденсатор отвечает за пропуск ВЧ. Все просто и оригинально.

Следует также знать, что кроссоверы первого порядка, а вернее их номинал, зависит от выбранной частоты разделения и величины сопротивления колонки. Проектируя ФНЧ, надо в первую очередь обратить внимание на частоту среза НЧ и СЧ динамиков(см.).
А вот проектируя ФВЧ, надо аналогичным образом поступить уже с ВЧ.

Пассивный кроссовер

Наиболее доступной на сегодня считается именно пассивная фильтрация, так как она сравнительно проста в реализации. С другой стороны, не все так просто.
Речь идет о следующих недостатках:

  • Согласовать параметры и значение фильтров с характеристиками излучателей колонок очень сложная штука;
  • В процессе эксплуатации может наблюдаться нестабильность параметров . К примеру, если повысится сопротивление звуковой катушки при нагреве. В связи с этим значительно ухудшится достигнутое в процессе разработки согласование;
  • Фильтр, обладая внутренним сопротивлением, забирает некоторую часть выходной мощности усилителя. Одновременно с этим ухудшается демпфирование, а это сказывается на качестве звучания и четкости передачи нижнего регистра.

Как известно, на сегодняшний день самыми распространенными акустическими системами считаются 2-х компонентные варианты.
В них фильтр разделяет звуковой сигнал на два диапазона:

  • Первый диапазон предназначается исключительно для низких и средних частот. В данном случае используется кроссовер для нижних частот или ФНЧ;
  • Второй диапазон предназначен для ВЧ. Здесь уже используется другой фильтр ФВЧ.

Примечание. Вариантов реализации фильтра может быть несколько, но он все должно отвечать определенным канонам.

Ниже приводится список требований, которым обязательно должен соответствовать кроссовер:

  • Фильтр не должен оказывать влияния на частотный спектр и волну выходящего аудиосигнала;
  • Должен создавать для усилителя, независимую от частоты нагрузку активного характера;
  • Должен суметь обеспечивать вместе с акустическими системами формирование диаграммы направленности. Это должно быть реализовано так, чтобы до слушателя доходило максимум излучения.

Из статьи мы узнали, как проводится расчет кроссовера акустических систем своими руками. В процессе работ будет полезно также изучить схемы, посмотреть видео обзор и фото – материалы.
Если научиться самостоятельно рассчитывать фильтр, платить за услуги специалистам не придется. Таким образом, цена операции сводится к минимуму, ведь надо только приложить немного терпения и уделить некоторое время изучению.

Тема сведения акустических систем довольно популярна среди радиолюбителей. Этому способствует не только желание созидать, благо динамиков нынче на любой бюджет, но также и неудовлетворительное качестве серийной акустики. Изготовление фильтров требует как правило большого опыта, отчасти эмпирического, так как строгий математический расчет в лице симуляций никак не отражает звучание, и тем более не может дать ответ как сводить. Примерная прикидка не всегда дает ожидаемые результаты.

Виной тому отсутствие внятной теории именно сведения, а не электрических фильтров, с ними все ясно, чего нельзя сказать про сведение, где все базируется на нюансах которые в литературе как правильно не описаны. Цель данной статьи поведать некоторые особенности проектирования фильтров на реальном примере. В этой статье, к величайшему сожалению, не будет полноценного расчета или инструкции как брать и делать, ибо каждый случай уникален и требует персонального рассмотрения, и в лучшем случае можно указать на что обратить внимание и задать вектор размышлений в целом.

Важные характеристики АС

Для начала разберёмся чем характеризуется акустическая система. Тут три характеристики: амплитудная, фазовая и импедансная .

  • АЧХ считается наиболее важной, так как больше определяет звучание, впрочем не в ней счастье, ровная АЧХ еще не гарантия хорошего звука.
  • ФЧХ сама о себе не слышна, может быть слышен резкий перегиб фазы в точке раздела.
  • ИЧХ вовсе на звучание не влияет, зато влияет на усилитель, но не на каждый, а лишь на тот у которого высокое внутреннее сопротивление, в частности ламповые.

Из-за кривого импеданса многие колонки могут не спеться с лампой, вся неровность импеданса вылезет в АЧХ. В каком-то случае это может пойти на пользу, но надеяться на это не стоит, хотя бы потому, что такая акустика будет крайне чувствительна к усилителю, станут слышны лампы, их режимы, а сравнение с каменным усилителем становится вообще не корректным.

Потому, если задаться цель построить акустику мало чувствительную к усилителю, необходимо обеспечить постоянство импеданса во всем диапазоне частот, а это накладывает определенные ограничения. В частности это обязывает применять фильтра настроеные на равную частоту среза и имеющие равную добротность.

Это правило позволяет для настройки фильтра контролировать только линейность импеданса, что исключает необходимость измерения АЧХ фильтров и в случаи отсутствия хорошего микрофона в измерении ачх динамиков, то есть можно обойтись минимальным набором приборов: генератором (возможно программным) и вольтметром.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано - произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину. На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений... А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Не забывайте, что большой ход порождает интермодуляционные искажения, поэтому каждому размеру динамика соответствует свой диапазон частот. В свете вышесказанного понятие частоты раздела размазывается на область, куда стоить сводить, а конечную точку подбирать иначе, например на слух. Или вовсе не подбирать, но про это чуть позже.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться - это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для выравнивания этих подъемов применяют так называемую цепочку Цобеля. Она состоит из последовательно включенных резистора и конденсатора. Проще всего ее подобрать методом научного тыка: берется реостат, горсть конденсаторов, и все это двигается пока не получится ровная линия.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

Сведение фильтров

Теперь начинается финальный этап - сведение фильтров. Пора намотать катушки... или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг - на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома - это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже - триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта - SecreTUseR.

Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ